神安煤层气管道全线贯通(神木至安平煤层气管道工程)

本文目录一览:

国内煤层气勘探开发进展

一、国内煤层气井下抽采利用情况

(一)中国煤层气井下抽采现状

中国煤层气资源潜力巨大,新一轮评价埋深2000m以浅的资源总量达36.8×1012m3,约占世界煤层气总资源量的13%。煤层气热值一般在33.44kJ/m3左右,中国每年排放的煤层气近200×108m3,相当于烧掉6000×104t标准煤。

根据资料统计,2006年,国有重点煤矿中,有高瓦斯矿井158处、煤与瓦斯突出矿井156处,高瓦斯、突出矿井数量约占49.8%,煤炭产量约占42.0%;主要分布在安徽、四川、重庆、贵州、江西、湖南及河南等省市。

(二)中国主要矿井瓦斯抽采量

中国开始进行井下瓦斯抽采的试验是从20世纪50年代开始的,当时仅有抚顺、阳泉、天府和北票等6个矿井抽采瓦斯,年抽采量约60×106m3;60年代又有中梁山、焦作、淮南、松藻、峰峰等局的20 多个矿井先后开展了抽采瓦斯工作,年抽采量为16×107m3;70年代抽采矿井猛增到83 个,抽采量达24×107m3;80年代抽采矿井达到111个,抽采量达到38×107m3。

最近几年,中国煤矿区瓦斯抽采非常活跃。2009年全国产煤30×108t,635处矿井中高瓦斯矿占24.6%,全年瓦斯安全死亡约2631人(百万吨死亡人数是美国的近19倍),年向大气释放煤层气约200×108m3,264处瓦斯抽放点,全年煤矿瓦斯井下抽采量为61.7×108m3,利用17.7×108m3,利用率28.7%。

(三)中国主要矿井瓦斯抽采率

阳泉、晋城、淮南、盘江、松藻、水城、抚顺、淮北、铁法、平顶山、鹤壁、焦作、鹤岗、峰峰、中梁山、天府、芙蓉、南桐、六枝等矿区是中国目前的主要抽采瓦斯矿区,各主要矿区抽采总量达到18.25×108m3,矿区平均抽采率为40.08%。其中,阳泉、晋城、淮南、盘江、松藻、水城、抚顺7个矿区的瓦斯抽采量最多,年瓦斯抽采量均超过了1×108m3。

除抽采量外,抽采率也是衡量矿井瓦斯抽采工作优劣的主要指标。在全国抽采矿井中,对18个主要矿区中112对矿井的抽采率进行了统计分析。

按照抽采率大小,中国主要瓦斯抽采矿区可以划分为3类:I类矿区:瓦斯抽采率40%,抽采效果好;II类矿区:瓦斯抽采率25%~40%,抽采效果一般;III类矿区:瓦斯抽采率25%,抽采效果差。

中国主要瓦斯抽采矿区的总体瓦斯抽采效果不好,平均抽采率30%。I类矿区只有6个,仅占主要瓦斯抽采矿区数的33%,平均抽采率59.3%;瓦斯抽采效果一般的II类矿区也只有4个,占主要瓦斯抽采矿区数的22%,平均抽采率33.5%;瓦斯抽采效果差的III类矿区则多达8个,占主要瓦斯抽采矿区数高达45%,平均抽采率仅为17.8%。如果考虑所有抽采瓦斯矿井,抽采率低于25% 的矿井比例会更多。井下混合瓦斯每年的总释放量达200m3/a,这样估算,中国瓦斯抽采率仅12%左右。大量宝贵的资源泄漏到大气之中,既浪费了资源,又污染了环境。

二、国内煤层气地面勘探开发情况

据不完全统计,截至2009年底全国共钻煤层气井超过4000口,日产气量266×104m3。全国已建成年产能25.0×108m3:其中中石油公司建成6.0×108m3,中联煤层气公司建成3.0×108m3,晋煤集团建成5.5×108m3,其他10.5×108m3,年产气量10.15×108m3(据国家能源局)。基本情况如表2-3所示。

表2-3 截至2009年底国内主要公司煤层气勘探开发现状表

初步掌握了一套适合中国煤层气井常规工程施工技术及工艺流程,同时编制了近30项工程技术标准或规程规范,良好地控制了工程质量。

对全国范围内的煤层气资源、分布及储层参数条件有了一个较为全面的认识,对有利地区进行了初步筛选,先后分别在山西沁水,河东,宁武,大宁—吉县,两淮,贵州,六盘水,陕西韩城,云南恩洪—老厂,辽宁沈北,江西萍乐丰城,湖南冷水江等几十个区块进行了钻探或井组试采试验,其中沁水南部和阜新地区大部分单井日产气1800~3500m3,供气比较稳定。

沁水盆地已成为煤层气开发热点,截至2009年底,沁水盆地累计钻井超过3000口,探明地质储量1596.35×108m3(中石油844.04×108m3,占52.9%),日产量达到248×104m3。中石油30×108m3/a煤层气产业化基地已具雏形,一期工程已建成10×108m3/a处理能力,并于2009年9月15日投产,目前每天向西气东输管线供气超过100×104m3。晋煤集团煤层气抽采能力达到了11×108m3,其中井下抽采5×108m3,地面抽采6×108m3。日销售能力达到160×104m3。中联煤层气公司:完成国家示范工程潘河项目建设,形成2×108m3产量。2009年12月21日与华北油田的煤层气输气管道成功对接,日供气量可达10×104m3。亚美大陆煤层气公司在大宁矿区形成约1×108m3/a产能。

鄂尔多斯盆地东缘煤层气勘探开发稳步推进。中国石油在陕西韩城,山西大宁—吉县、三交区块已完成钻井289口(探井63口,生产井226口),二维地震1260km。2009年提交基本探明煤层气地质储量1145×108m3。

三、国内煤层气勘探开发发展历程

近年来,中国煤层气地面开发和井下抽采日益活跃,煤层气产业已经进入快速发展阶段。

中国的煤层气井下抽采始于20世纪50年代,主要是井下瓦斯抽采,起步早,但进展缓慢,最近几年,中国煤矿区瓦斯抽采非常活跃,2009年全国煤矿瓦斯井下抽采量达61.7×108m3,较2006年翻了一番,利用17.7×108m3,利用率28.7%。截至2009年底,煤矿安全死亡2631人(因瓦斯事故死亡750人),百万吨死亡率0.987,首次降至1以下。

中国煤层气地面勘探开发始于20世纪90年代初,近几年发展较快,已初步准备了可供开发的煤层气资源,初步形成了煤层气开发工艺技术,多个区块已取得较好的产气开发效果,并实现了小规模商业化生产。

煤层气地面开发主要集中在沁水盆地、鄂尔多斯盆地东缘,以及阜新盆地的刘家区块,截至2009年底,沁水盆地南部沁水气田钻井超过3000余口,年产气9.7×108m3;鄂尔多斯盆地东缘共钻煤层气井430余口,年产气超过1500×104m3,阜新盆地刘家区块共钻煤层气井70余口,年产气超过3000×104m3。

在国家战略选区和煤层气示范工程等项目的推动下,近年中国煤层气开发取得突破性进展,以直井和多分支水平井为代表的煤层气开发技术逐步成熟,煤层气产业进入快速发展阶段。同时,国家适时出台了一系列优惠政策,极大地促进了煤层气产业的发展,中国煤层气产业进入快速发展阶段。

煤层气运输管道供需现状

煤层气产业的发展离不开长距离运输管道。将煤层气从产地输送到消费地区主要通过管道运输,或将煤层气液化,使用LNG运输车运送。两种运输方式各有其特点,经济性也有差别,但多数情况下以采用管道运输为多,因管道运输具有节能、低耗和安全的特点而成为天然气输送的主要运输方式。煤层气和天然气可以混输混用,加上管道建设投资周期长、风险大,因此,煤层气的运输应尽量利用现有的天然气运输管道。我国的华北、西北和东北地区都蕴藏着丰富的煤层气资源,“西气东输”、“陕京二线”等国家级重大管网工程的相继建成,为我国煤层气产业的发展奠定了一定的基础。

根据新一轮全国油气资源评价的结果,我国天然气探明储量主要集中在塔里木、四川、鄂尔多斯、东海、柴达木、松辽、莺歌海、琼东南和渤海湾等9大盆地,平均探明程度16.24%,待探明天然气地质资源也主要分布在这9大盆地中,以塔里木、四川、鄂尔多斯和东海盆地最多[87]。可见我国天然气和煤层气资源主要分布在经济欠发达的中西部地区,而天然气的消费主要集中在经济发达的东部和南部沿海城市。虽然天然气(煤层气)可以压缩成CNG或液化成液态的LNG通过罐装槽车运输,但运输量不大,只能供应邻近地区使用。因此,管道运输成为一种客观需要。由于我国天然气和煤层气资源的分布特点,煤层气管道运输可以利用现有的天然气管道。本书对煤层气运输管道供需现状的分析是根据天然气管道的供需现状来研究的。

我国天然气第一条输气管道是1963年建成的四川巴渝管线。20世纪80年代建设了中开(中原油田—开封)、开郑(开封—郑州)、中安(中原油田—安阳)和中沧(中原油田—沧州化肥厂)输气管线;90年代建设了陕京线(陕西靖边—北京)、长宁线(陕西靖边—宁夏银川)、靖西线(陕西靖边—西安)、鄯乌线(新疆鄯善—乌鲁木齐)、彩石克线(新疆彩南—克拉玛依)等输气管线。2000年以后,又相继建设了西气东输线、陕京二线、忠武线、涩宁兰线等重点输气管线工程。经过40多年的建设,截至2008年底,全国天然气管道总长度约2.8×104km,其中管径大于426mm的管道总长度为1.7×104km。已经建成的天然气主干管道包括:西气东输线、陕京一线与二线、涩宁兰线、忠武线、淮武线、长呼线、冀宁线,除了陕京一线外,其他均是在“十五”期间建成的(表6-3)。其中西气东输工程以新疆塔里木油气田为主供气源,以环渤海和长江三角洲地区为主要供气市场,西起新疆塔里木轮南,向东经过库尔勒、吐鲁番、鄯善、哈密、柳园、酒泉、张掖、武威、兰州、定西、西安、洛阳、信阳、合肥、南京、常州等大中城市,终点为上海,东西横贯新疆、甘肃、宁夏、陕西、山西、河南、安徽、江苏、上海等9个省(自治区),全长3900km,形成横贯东西的中国能源大动脉。该管线经过新疆塔北煤田、准南煤田、鄂尔多斯盆地、沁水盆地、豫西煤田和两淮矿区等6个主要煤层气富集区,在山西八角、河南郑州、安徽两淮留有分输口。陕京管线则从北部经过了山西河东煤田、沁水盆地北侧,在柳林留有分输口。西气东输管线和陕京管线为开发利用煤层气富集区资源提供了良好的输送条件。

表6-3 我国已建的主要天然气主干管线

(据中国石油天然气集团公司,中国燃气网,中国天然气工业网,中国能源网相关资料整理)

2007年4月,国家又核准了川气东送项目,西气东输二线也在筹建当中。2008年2月22日,西气东输二线工程开工建设。根据规划,西气东输二线管道西起新疆霍尔果斯,经西安、南昌,南下广州,东至上海,途经新疆、甘肃、宁夏、陕西、河南、安徽、湖北、湖南、江西、广西、广东、浙江和上海13个省(自治区、直辖市)。管道主干线和8条支干线长达9102km。西气东输二线管道主供气源是土库曼斯坦、哈萨克斯坦等中亚国家的天然气,国内气源作为备用和补充气源。这条管线建成后,每年将从中亚地区向我国经济最发达的珠三角和长三角地区稳定输送约300×108m3的天然气,其间还将连接塔里木、准噶尔、吐哈和鄂尔多斯盆地天然气资源。西气东输二线工程设计输气能力300×108m3/a,总投资约1420亿元,由中国石油天然气集团公司独资建设,2010年建成通气。我国能源发展“十一五”规划提出,2010年天然气占一次能源消费总量的比例要达到5.3%。据中国石油天然气集团公司专家测算,西气东输二线管道建成后,可将我国天然气消费比例提高1~2个百分点。这些天然气每年可替代7680×104t煤炭,减少二氧化硫排放166×104t、二氧化碳排放1.5×108t[133]。到2010年,我国的天然气骨干管网将由现在的2.8×104km发展到4.4×104km,达到“西气东输、北气南下、海气登陆、就近供应”的天然气供应目标,覆盖全国的主干天然气管网将基本建成。天然气网络体系将不仅在国内新疆、陕甘宁、青海、川渝4大气区实现互联,也将与下游京津唐、长江三角洲、华中及珠三角地区实现互联互供。由此可见,我国天然气管网的建设,为煤层气资源的开发利用创造了有利的条件。但是必须看到,我国目前的天然气基础管网还比较薄弱。大部分建于20世纪的天然气管道,与国外天然气工业发达国家的管道相比,除20世纪90年代投产的陕京管道和海南崖港海底管道具有世界先进水平外,其余都较为落后,主要表现在以下几个方面:其一,管道少,分布不均,未形成管网骨架。其二,管道技术设备水平低。其三,管道老化,能耗大,用人多,利用率低,经济效益差[134]。而煤层气输送,还需要建设井田内部管网及长输管网,才能和我国天然气主干管道相接。这无形中增加了企业成本,影响了企业的经济效益和开发煤层气的积极性。虽然西气东输管道的建成,使这一问题有所改观,但煤层气管网建设仍需加强。

山西省以什么方式输出天然气

位于鄂尔多斯气田山西境内的一部分气井的产量是中石油自己的管线输出的。

还有就是通过液化的LNG和高压CNG槽车运输到省外。这个量非常小,成本也很高。

山西有自己的省级天然气管网公司:山西天然气股份有限公司。这公司自己有管线运输天然气/煤层气。不过都是在省内。比如:寿阳县、榆次区城市燃气管网煤层气、天然气贯通工程,包括四个项目。一是全长49公里的盂县——寿阳输气管道工程,二是总长20公里的寿阳天然气城市管网工程,三是全长21公里的远东寿阳煤层气地面集气管网工程,四是线路全长60公里的榆次城市燃气外环次高压管网项目。榆次城市燃气外环次高压管网全线具备正反输功能,通过与盂县——寿阳长输管线的对接,可将煤层气资源输至晋中市,也可将晋中主管道的天然气反输到寿阳,提供充足的后备气源保障。寿阳煤层气地面集输先导工程与盂县——寿阳输气管道的全线连通,将寿阳煤层气资源直接进入全省天然气管网,实现了天然气与煤层气管道在省内的大贯通

中国各地区煤层气利用潜力分析

一、中部区煤层气利用潜力分析

中部区盆地主要为沁水盆地、鄂尔多斯盆地、四川盆地、大同盆地、宁武盆地和阴山盆地。其中大部分煤层气丰度较大的煤层气富集区都位于或靠近经济比较发达的地区。如煤层气资源富集的沁水盆地在山西南部,经济较为发达,交通便利;鄂尔多斯东部,有西气东输管线穿过煤层气富集区;鄂尔多斯南部靠近西部最大的城市陕西省会西安市;四川盆地,人口众多,经济发达。根据中部人口密集,工业较发达的实际情况,该区煤层气利用前景广阔。可以考虑如下几方面对该区煤层气资源进行利用。

(一)煤层气民用

沁水盆地现在煤层气已经有一定的产量,在当前产气量较小、产量不太稳定的情况下,供应沁水、高平、陵川3县(市)城镇居民使用;晋城煤层气综合开发利用项目是将阳城、沁水部分煤矿输送到晋城市市区及部分县区的煤层气和山西能源产业集团有限公司及晋煤集团车载输送的压缩煤层气作为气源,建设晋城6县(市、区)的城市煤气管网,供工业和民用。该工程建设期为3年,即2005~2008年。2006年市区居民即用上煤层气。

鄂尔多斯盆地南缘靠近西安市,位于煤层气1类资源附近的居民总数超过2800万人。西安市天然气管道已经在全市范围内组成天然气管网。而且在其他地区也已经具有相当规模的天然气网络,因此生产出的煤层气可以直接输入管道进行民用。

四川盆地人口密集,民用天然气需求量大。目前,重庆市天然气供应面临着一场危机。尽管重庆是全国最大的天然气产地,年产气量64×108m3,占全国总产量的1/5左右,但重庆天然气需求与供给的矛盾已经非常突出。用气危机产生的原因主要是中石油提供给重庆市的天然气用量不能满足需求。虽然现在重庆市主动对重点用气项目进行了几度压缩,使2007年重庆天然气的总需求没有超过45×108m3。但重庆市与中石油经过多次协商,达成的协议也只是中石油承诺在2004年用气量29.8×108m3的基础上,每年增加3.3×108m3,即2007年提供40×108m3天然气给重庆使用。但这对于重点用气项目来说,还是存在着天然气需求量缺口问题。同时,气不足已经对重庆经济的发展产生了一定的影响。一些急需用气的企业不得不限产或停产。同时,煤层气可以作为汽车的燃料。到2000年底,四川、重庆已有CNG站90余座,已有CNG汽车24080辆,是1998年末3204辆的7.5倍。2001年已建成CNG站145座,累计改车36833辆,其中,四川128座,累计改车34333辆;重庆17座,累计改车2500辆,CNG产业已进入快速发展的轨道。川渝地区仅现有出租车、公交车(含中巴)、环卫车、公务用车等可供CNG改装的各类汽车近110多万辆。重庆规划到2010年建CNG加气站450座,CNG汽车9万辆;四川省规划到2010年建CNG加气站300座,改车10万辆。CNG汽车如能与汽车制造业结合,必将有更快的发展。

大同市冬季漫长,居民采暖需要消耗大批煤炭,并且还会造成大气污染。利用煤层气取暖不仅可以解决大气污染的问题,减少废渣排放,而且能够充分利用煤层气热效能高的特点为居民的生活服务。2005年11月,经过近两年施工的金沙滩—大同天然气长输管线已全线贯通,天然气供气管网工程的主要干线和环城干线及大部分支线也已建成竣工,整个天然气利用工程24日点火通气。金沙滩—大同输气管道是山西天然气(煤层气)管网规划的重要组成部分,也是该省继临汾—河津、盂县—阳泉两条省级天然气管道建成运营之后,又一条建成运行的省级天然气输气管道。2010年将完成二期工程建设后,御东区、矿区、城区等都将使用上净洁、高效的天然气,这将为大同煤层气的开发提供机遇,使生产的煤层气可以直接输入天然气管道。

(二)煤层气发电

在沁水盆地,利用阳泉煤业集团三矿和新景矿现有的煤层气抽放量,建设一座11MW煤层气电厂,供矿区自用。本项目建设期1年,总投资6460万元(778万美元),年供电7326×104kW·h。项目全部投资的35%由阳泉煤业集团提供,其余65%通过向金融机构贷款或由国外投资来解决。初步经济分析表明,项目净现值1495万元(180万美元),内部收益率为23%,投资回报期为7年。阳泉煤业集团拟于2002年底启动该项目,并于2003年底建成投产。

鄂尔多斯盆地煤炭资源丰富,因此火力发电厂也较多,如韩城发电厂、西安南郊热电厂、铜川电厂等。这些地区已经有成规模的火力发电的基础。显然利用天然气发电与煤发电发展起来比较容易,这是鄂尔多斯盆地煤层气利用的重要途径之一。

大同是华北地区重要的电力生产基地,全市电力工业装机总容量138×104kW·h。大同三角区的神头一、二电厂,大同一、二电厂,丰镇电厂共同组成中国最大的输变电网,向京津唐地区供电,每年向京、津、唐地区输电超过60×108kW·h,担负着首都1/4的供电量,使国家电力东调的战略性计划得以实现。大同具有良好的电力生产发展基础,境内仍有继续建设火力发电厂的各种资源条件,用煤层气发电可向东部地区提供成本更低的电力资源。

(三)煤层气工业燃料和原料

鄂尔多斯南缘生产的煤层气可直接运到西安市,进行深加工。经过几十年的发展,西安已形成了以机械设备、交通运输、电子信息、航空航天、生物医药、食品饮料、石油化工为主的门类比较完整的工业体系,成为中国目前重要的中高压输变电成套设备。全市现有工业企业46243户,资产总额1054.36亿元,其中市属工业企业净资产约499.42亿元。煤层气在该地区既可以用于化工和制药的原料,也可以用于合成化肥和甲醇等。

四川盆地天然气终端消费价格水平低于全国水平,正是这种优质低价的天然气,使当地许多暂时困难的优势企业成功地实现解困过渡。由于天然气价格较低、气质好,可以生产出优质产品,吸引了外地许多使用天然气做原燃料的企业入川兴业,这些企业涉及电子、轻工、陶瓷、IT等产业,带动了内地经济的发展。例如在四川盆地的眉山—夹江—乐山一线形成了建陶生产基地,这些企业大都来自广东省。然而由于天然气的相对紧缺,这些企业的燃料问题成为制约企业发展和增加经济效益的主要问题,这为煤层气的利用提供了广阔的市场前景和应用前景。

大同全市主要工业有煤矿、机械、建材、化学、电力、粮食加工等。大同矿务局年产原煤超过2700×104t,占全市原煤年产值的3/4,居全国首位。此外,山西柴油机厂、大同水泥厂、大同机车厂等,都是规模宏大、机械化程度较高的骨干工业。这些工业企业现在所用燃料以煤炭为主,这样给大同市和周边地区带来大量的污染源。大同煤层气的开发利用可以通过煤层气利用管线直接提供给这些企业作为燃料。

二、西部区煤层气利用潜力分析

西部区主要盆地为准噶尔盆地、天山盆地(群)、塔里木盆地、柴达木盆地、吐哈盆地和三塘湖盆地。其中准噶尔盆地南缘煤层气勘探最有利目标区与乌鲁木齐市相邻。吐哈盆地西有哈密市,南有吐鲁番市,人口相对密集。但总体上西部人口相对稀少,工业相对落后。因此,西部煤层气的利用以输出为主,其次为发电与民用。

(一)通过管线或交通网输送到经济发达区

随着国家对能源结构进行战略性调整,实施“以气补油”计划,大规模开发利用天然气。同时,国家经济贸易委员会亦提出对西北地区工业结构做重大调整,三大调整思路之首就是集中力量扶持石油天然气工业和化学工业,要求加快塔里木、准噶尔、吐哈、柴达木盆地的天然气(煤层气)勘探开发。为解决资源与市场分割的矛盾,国家已开始全国天然气管网的大规模建设,特别是作为西部大开发标志性工程的“西气东输”管网建设项目的竣工和“西气东输二线”工程的建设。

西部生产的煤层气可以向上海及沿线的其他省市等供气。现在,克拉2气田、牙哈气田的产量基本满足了西气东输目前的需求,但对于上海等9大城市天然气需求量随着国民经济的增长需要而不断提高,这对天然气开发提出了新的挑战,而煤层气的勘探开发利用将会补充天然气相对不足的缺陷,为9大城市的需求量提高供气保障。

(二)开展就地天然气发电与外销发电相结合

利用塔里木地区较为丰富的天然气资源和煤层气资源,在当地建设天然气发电厂,并借鉴“西气东输”的思路建设电网输电管线,将发电厂的电销售到距离该区较近的企业或者作为距离较近城市的民用电。也可以直接通过输气管线将产出的天然气和煤层气输送到天然气开发有限公司和天然气发电厂,从而为发达地区的发电工业提供燃料。

乌鲁木齐供热企业所用燃料比较单一,主要燃料还是依赖原煤,大气污染具有典型北方城市煤烟型污染特征,空气中主要污染物是总悬浮颗粒物,空气污染冬春两季重于夏秋两季,采暖期重于非采暖期,因此要尽快改变目前的状况,采用煤层气、天然气多种洁净能源,帮助改善市区的大气环境。在以气代油方面,乌鲁木齐市公交公司取得了一定成效,2001年已投入改装用天然气汽车1164辆,年耗天然气1272×104m3。另外,社会中巴车和出租车改装用液化石油气作动力的汽车2800辆,年耗液化石油气18291t,到2005年共改装燃气汽车22500辆,年供压缩天然气7200×104m3、液化石油气8.64×104t。通过降低对汽油燃料的依赖性,减轻对石油需求的压力,从而对保证该区能源安全、保护大气环境具有重大战略意义。

柴达木盆地北缘的鱼卡区煤层气的利用也可以通过发电的方式向外输送。鱼卡煤层气发电项目可以建设在鱼卡地区。鱼卡位于柴达木盆地西北部,属马海、大柴旦、锡铁山、绿草山、滩间山、冷湖、涩北工业开发区的重点地区。该地区工业较为发达,煤矿较多,建议对该地区煤层气的开采采用采煤采气一体化的方式。发电后可就近向西部工业开发区供电,可接入青海乌兰—格尔木330kV输变电网。

三、东部区煤层气利用潜力分析

东部区的主要盆地为二连盆地、海拉尔盆地与三江-穆棱河盆地。其中二连盆地的周边霍林河地区城市较为发达,人口相对密集,并且靠近东北三省,有较为发达的化工工业与制药业等;相对二连盆地,海拉尔盆地呼和湖和扎赉诺尔地区人口稀少,且呼和湖和扎赉诺尔浅部煤炭资源已进行了开发利用,能源资源在当地供过于求。因此这两个地区的煤层气利用前景有所差别。但总体来说,霍林河地区煤层气以就地民用及发电为主,而海拉尔盆地煤层气以向经济发达地区输送为主。

(一)煤层气民用

霍林河地区下游条件整体较好,靠近乌兰浩特市、霍林郭勒市、白城市、通辽市。其中乌兰浩特市总人口29万,公路、铁路四通八达,111国道、302国道、省际大通道纵贯全境;铁路开通了直达北京、长春、哈尔滨等大城市的客运和旅游列车。霍林郭勒市是内蒙古自治区直辖的一座新兴的草原煤城,现辖1个苏木、1个镇、3个街道办事处、12个嘎查村,全市有汉、蒙、回、满等17个民族,总人口7万。白城市全市总人口313662人,其中城镇人口为147881人,乡村人口为165781人。该区附近人口众多,并且现在民用燃料主要以煤炭为主,污染严重。如果改用煤层气作为民用燃气,不但可以减少煤炭燃烧所带来的污染,而且可以降低煤矿瓦斯带来的安全隐患。

(二)煤层气发电

霍林河地区现在已经建立了以煤炭为主的火力发电厂,并且中国电力投资集团公司与霍林河煤业集团公司合作正在建设坑口电厂。该区已经有很强的火力发电基础,容易建立煤层气发电站。并且电能可以直接输入东北电网,这样可以缓解吉、辽省间主干电网的北电南送输送压力。

海拉尔地区集中供热源主要有海拉尔热电厂、东海拉尔发电厂和海拉尔热电厂南郊分厂3处,集中供热面积达415.5×104m2。2009年东海拉尔发电厂扩建两台50MW机组,供热负荷可增加208×104m2,同时铺设了一条14.7km长、直径为920mm的热网管线,沿途建设14个换热站,保证新老用户的供暖。该区的煤层气资源可以用来发电或者作为供热燃料之一试用。在煤电一体化建设方面,呼伦贝尔市伊敏煤电公司一期发电通过东北电网销售约50×108kW·h,伊敏煤电公司二期2×600MW、三期4×600MW机组,宝日希勒电厂4×600MW机组等发电后也要通过东北电网输出。因此,在争取东北电网公司的支持,保证电厂和输电线路同步建设的同时,大力开发清洁可接替的煤层气资源来补充或者优化发电燃料,是加快该区资源优势向经济优势转化的重要环节。

四、南方区煤层气利用潜力分析

南方区的主要盆地为滇东黔西、萍乐盆地。其中滇东黔西地区煤层气资源量大,资源丰度高,是华南最有利的勘探地区之一。该区下游条件整体较好,靠近大中城市,该地区人口在30万以上的大中城市有20多个,总人口近6000万,该地区在2010年天然气需求量将达到230×108m3。萍乐盆地所在的江西省能源缺乏严重,进入20世纪80年代后,由煤炭调出省变为调入省,能源生产的增长与国民经济的发展很不适应,已成为制约江西国民经济进一步发展的突出矛盾,地方对用气具有很大的积极性。根据南方区能源缺乏的特点,该区煤层气的利用以综合加工、民用及发电为主。

(一)煤层气综合加工工业

随着滇东黔西经济的高速发展,甲醇需求量仍将保持较高速度的增长,滇东黔西甲醇生产能力约为20×104t/a,其中以常规天然气为原料的占12%,煤层气几乎为零,这为煤层气的利用提供了广阔的发展空间。

江西已建立了汽车、机械、电子、化工、冶金、建材、食品、纺织、医药等多门类工业体系,一批工业企业和优势产业发展迅速,已成为国民经济的主导力量。萍乐盆地煤层气富集区丰城距南昌市仅60km,因此煤层气综合加工工业前景广阔。

(二)煤层气民用

《贵州省城市燃气发展规划》将全省划分4个区域、81个气化区发展燃气。中部为天然气气化区,计划引进川渝天然气,在川渝南线选择合江站为接入口,经赤水、仁怀、遵义、贵阳,延伸至安顺、凯里、都匀,共18个市县,形成“一横一竖”输气格局,2003年开始建设,以2010年规模为基础估算,总投资27.5亿元;东部、南部为液化气气化区,计划引进省外液化气,以液化气为主导气源,严格控制煤制气,覆盖范围48个市县;西部为煤制气控制气化区,将充分利用本地煤炭资源,以煤制气为可以或优先考虑的气源,以液化气为补充气源,不排除其他气源形式,覆盖范围17个县市;充分利用六枝煤矿矿井气地下抽放系统,在六枝特区发展矿井气,并以液化气为补充气源,成为独立气化区。该方案提出,在本地天然气(包括煤层气)资源开发条件成熟时,西部和南部作为天然气就近供应气化区域,远景与中部天然气管联网,并考虑向云南和两广地区供气。

根据人口变动情况抽样调查统计,萍乐盆地所在的江西全省总人口为4185.77万。其中,城镇人口1272.89万人,占30.4%;乡村人口2912.88万人,占69.6%。民用燃料需求量大,并且以煤炭为主。现在江西部分城市已经铺设天然气管道,如赣州2005年6月已经建设成江西最大的天然气管道系统。这样从丰城生产的煤层气可以直接输入天然气管道系统,因而民用是其煤层气利用的重要途径。

(三)煤层气发电

天然气发电是滇东黔西地区煤层气利用的重要途径之一。贵州水城矿业(集团)有限责任公司利用科技手段开发煤层气资源,变废为宝,利用煤层气发电,形成了“以用促抽、以抽促安全”、以发电促生态建设的良性循环新局面,重特大安全事故得到有效遏制。2003年水矿集团从胜利油田引进天然气发电机组,把过去向空中排放的煤层气资源充分利用起来发电,取得了良好的社会效益和经济效益。水矿集团建设的大湾矿一期6×500kW煤层气发电厂,成为贵州省第一个煤层气发电站,煤层气发电机组装机22×500kW,容量达到1.1×104kW,每台机组的实际运行功率在400kW左右,每天可供电15×104kW·h时左右。一台煤层气发电机组投入资金100万元左右,每台按400kW输出功率连续运转,每年可运行250~300天,所发电量供矿区自用,每千瓦时成本仅0.08~0.10元,投资回收期2年。

煤层气生产的技术层面

黄晓明1 F.Andrew2 莫日和1 王洪洲2 林亮1

黄晓明,中联煤层气有限责任公司,邮箱:huang-cucbm@sina.com.cn,电话:64298881。

(1.中联煤层气有限责任公司 北京 1000112.加拿大英发能源公司 安徽宿州 235200)

摘要:本文从地质及储层特征等技术层面上探讨了淮北煤田芦岭矿区煤层气井的生产条件,这些生产试验井的钻探目的是(1)评估煤层气的生产特性,(2)确定储层的排采条件,(3)评价并改进完井技术,进而(4)全面评估煤层气生产所面临的问题。勘探结果显示该井区煤层发育稳定、内生裂隙发育、煤层气含气量中等-偏高,含气饱和度较高,表明具有较好的煤层气生产潜力。300m井间距的煤层气生产试验井组已于2010年4月投产,本文着重探讨了CLG09V-01井的煤层气生产条件。

关键词:煤层气生产试验井 煤层 等温吸附实验 煤层气生产条件

Technical Studies of the CBM Pilot in Luling Coal Mine Area, Suzhou, China

HUANG Xiaoming1 F. Andrew2 MO Rihe1 WANG Hongzhou2 LIN Liang1

(1. China United Coalbed Methane Co. Ltd., Beijing 100011, China2. Canelite Energy, Suzhou 235200, China)

Abstract: This paper is a technical approach documenting geology and reservoir property studies of Luling coal - mine CBM pilots. The pilot wells were drilled to (1) assess gas productivity, (2) determine if the reser- voir can be dewatered, (3) evaluate and improve completion techniques, and (4) assess full-field development issues, and it has showed a high CBM potential for the well developed coal seams with a good cleated coals, and the medium gas contents with a comparatively high saturated coals of these wells. The pilot wells at 40-acre well spacing were put on production in April 2010, and this paper focus primarily on the productivity of the CLG09V- 01 well.

Keywords: CBM-pilot; coal seams; adsorption isotherms; CBM productivity

安徽宿州芦岭煤矿位于淮北煤田的东南缘,距宿州市20km,矿区面积23km2,煤炭年生产能力180万t(中煤地质总局,1996),矿区同时位于中联公司拥有探矿权的宿南煤层气勘查区块的东部(图1)。宿南煤层气区块面积约850km2,是我国第一个与外国公司签署的中外合作煤层气勘探开发项目,目前外方作业者为加拿大英发能源公司。本次调查工作主要集中在芦岭矿区范围内施工的一口煤层气参数+生产试验井,CLG09V-01井。该井连同与其相关的300m井间距的生产井组已于2010年4开始进入煤层气排采试验阶段。包括本区在内的整个宿州地区一直是煤层气勘探开发的热点地区,也是包括煤矿、油气公司和煤层气专业公司针对煤层气资源勘探投入较大、研究程度较高、开发利用较为成熟的地区之一。通过持续不断的勘探投入,该地区的煤层气商业开采(结合瓦斯治理)已初具规模。早在20世纪90年代初,依托联合国煤层气资源评价项目在包括芦岭矿区在内的整个宿南煤层气区块范围内施工了两口煤层气参数井(CQ-4,5井),取得了较好的勘探成果。1998~2002年,美国德士古(Texaco)石油公司作为第一个外方合作者在距芦岭煤矿西南15~20km范围内施工了9口煤层气参数井,包括一个300m井间距的生产试验井组,最高单井产气量为1700m3/d,最低500m3/d。2004~2008年,芦岭煤矿在距CLG09V-01井东南5km的煤矿塌陷区施工了7口煤层气生产井,井间距250m,初期单井最高产气量为3000m3/d,投产两年多以来,目前单井产量稳定在1000m3/d左右,所生产的煤层气供煤矿瓦斯电厂发电,实现了煤层气的商业利用。

图1 安徽宿州宿南煤层气区块煤层气勘探开发形势图

1 地质特征

(1)构造

淮北煤田位于华北板块的东南缘,区内构造主要表现为在东西向隆起带的基础上,受北北东向逆冲断裂控制而形成的一系列近南北向的断块。导致古生界地层呈北北东向展布,地层倾向偏东,倾角一般为23°。

芦岭矿区位于淮北煤田东南缘,北界为东西向的宿北断裂,南部靠近板桥断裂,这两条东西走向、倾向相向的同生正断层构成了一个区域性的地堑,对矿区的煤系地层沉积起到控制作用。芦岭煤矿东界为一北西向的逆断层,对煤系地层起到明显的改造和控制作用,矿区呈北西向展布,地层北倾,使其在淮北煤田具有鲜明的构造特点。煤田东部逆冲推覆构造发育,从东向西呈叠瓦式推覆,矿井下常见层滑小构造,对采煤有较大影响。矿区周边燕山期火山作用较为频繁,主要表现为酸性火成岩侵入体,多以岩床、岩株和岩脉的形式侵入到古生界沉积地层中。其中,下二叠统山西组地层受岩浆接触变质和岩浆热力变质作用明显,煤质变化大,煤类复杂,以贫煤,无烟煤,天然焦为主。然而,岩浆作用主要发生在宿北断裂以北地区。芦岭矿区受岩浆岩侵入体的影响较小,煤变质程度相对不高,以气煤为主。

(2)地层

芦岭矿区所处的两淮地区在沉积地层上属于南华北地层分区,晚古生界地层为一套三角洲体系和多重障壁体系交替沉积,含多层可采煤层(中煤地质总局,2001)。根据沉积旋回和岩性组合特征,将地层自下而上划分为本溪组、太原组、山西组、下石盒子组、上石盒子组和石千峰组。CLG09V-01井是在芦岭矿区施工的一口煤层气参数+生产试验井,钻井位置见图1。该井所钻揭的地层主要包括石炭系太原组地层、二叠系山西组和上、下石盒子组地层,以及约250m厚的新生界松散地层。本文着重讨论与主要目的煤层相关的下二叠统煤系地层的岩性组合特点(图2)。

从图2中可以看出,山西组10号煤层的电性特征明显,结构稳定,厚度为2.69m。其直接底板为砂质泥岩,厚3.38m,含水性弱,渗透性较差。其下部紧邻地层到石炭系太原组灰岩顶界之间为厚层状的粉、细砂岩和砂质泥岩间互,表现为高伽马和中高电阻率特征,弱含水,渗透性好于煤层底板。10号煤的直接顶板为6.08m厚的细砂岩,纯净且渗透性较好。传统的煤层气地质理论认为,渗透性好的煤层顶、底板不利于煤层气的保存。然而根据我们多年的煤层气地质勘探实践发现;较好的渗透性有利于煤层气的排出,从而促进了煤层气的大量生成,有效地提高了煤储层的煤层气含气饱和度(黄晓明等,2010),这点在本文后面的讨论中再次得到印证。

下石盒子组地层中包含了两套主要目的煤层。8号煤层厚达9.19m,但井身结构不稳定,煤芯破碎,扩径明显。直接顶、底板为砂质泥岩,含水性弱,渗透性较差。但其上部紧邻地层为10m厚的细砂岩(见图2),渗透性好,若因断层错断导致煤层与该渗透层直接接触,可有效地提高煤层的排烃效率,从而提高煤储层的煤层气含气饱和度。7号煤层厚2.36m,顶、底板为泥岩,含水性弱,渗透性差,内生裂隙发育,具有较好的煤层气渗流通道,但煤层顶、底板的封闭性在一定程度上影响了其生烃效率。

CLG09V-01井区的上、下石盒子组地层分界在井深510m处,以紫斑状铝质泥岩为地层划分标志层。上石盒子组地层由紫、黄绿和杂色砂岩、粉砂岩和泥岩互层组成。在宿南煤层气区块其他地区较为发育的3号煤层,在本井区不发育。

(3)水文地质

淮北煤田二叠系含煤地层含水性弱,断层破碎带一般为泥质充填,亦为弱含水性。本区主要含水层包括:新生界松散地层含水层2~3层,一般厚5~20m,单位涌水量0.26~1.21L/s·m,最下一层含水层直接覆盖在煤系地层之上。石炭系太原组灰岩含水层位于二叠系煤系地层之下,单位涌水量变化较大,在本井区涌水量极小。新生界及太原组灰岩含水层对芦岭煤矿无直接充水影响。二叠系煤系地层中的砂岩裂隙水是矿区的直接充水水源,但因其含水性弱,对煤矿开采和煤层气生产不造成重大影响。

图2 宿南煤层气区块芦岭矿区CLG09V-01井实钻地层剖面

2 储层特征

(1)煤岩、煤质特征

7 号煤煤岩成分以亮煤为主,暗煤次之,内生裂隙发育,煤芯呈块状,玻璃光泽,断口呈阶梯状,网状结构。煤显微组分含量:镜质组为78.9%,惰质组为17.4%,壳质组未见,无机组分占12.6%,镜质体反射率为0.71%。煤视密度为1.37,灰分为21.97%,挥发分为37.84%,固定碳含量为83.55%。

8号煤煤岩成分由亮煤和暗煤组成,宏观类型为半亮型煤,条痕为黑灰色。煤芯十分破碎,以至于裂隙无法描述,少部分小碎块断口为参差状,呈线理状构造。煤显微组分含量:镜质组为76.2%~85.5%,惰质组为12.0%~19.5%,含微量壳质组成分,镜质体反射率为0.76%~0.83%。无机组分含量不高,平均为7.6%,一般为分散状粘土,个别呈层状或侵染状形态。煤视密度为1.32~1.38,灰分为11.72%~16.78%,挥发分为31.08%~33.74%,固定碳含量为84.88%~85.84%。

10号煤煤岩成分以亮煤为主,暗煤次之,宏观类型以半亮型煤为主,内生裂隙十分发育,裂隙面光滑平整,面裂隙40~42条/5cm,端裂隙28~32条/5cm。煤芯呈块状,条痕为灰黑色,呈金属光泽和玻璃光泽,断口参差状,具孤立网状结构,裂隙被黄铁矿部分充填。煤显微组分含量:镜质组为76.3%~88.1%,惰质组为10.0%~18.8%,壳质组为1.95%~5.0%,无机组分占2.2%~16.2%,镜质体反射率为0.83%~0.90%。煤视密度为1.36,灰分含量平均为10.05%,挥发分平均为36.69%,固定碳含量为82.57%~85.57%。

(2)含气量、等温吸附特性

7 号煤的两个煤芯解吸测试结果表明,其空气干燥基含气量为6.10~6.68m3/t;干燥无灰基含气量为7.30~8.00m3/t,吸附时间变化在4.60~4.67天,平均4.64天。气体成分以甲烷为主,占96.67%~96.82%,氮气含量2.92%~2.96%,重烃含量极微。等温吸附实验表明,7号煤的原煤饱和吸附量为12.87cm3/g,干燥无灰基饱和吸附量为16.71cm3/g,兰氏压力为2.21MPa。从等温吸附曲线上可以看出(图3),原煤等温吸附曲线平缓,干燥无灰基曲率变化明显。

图3 宿南煤层气区块芦岭矿区CLG09V-01井煤芯样品等温吸附曲线

8号煤的18个煤芯解吸测试结果表明,其空气干燥基含气量为8.05~9.85m3/t;干燥无灰基含气量为9.49~11.26m3/t,吸附时间变化在1.34~2.35天,平均2.08天。气体成分以甲烷为主,占94.10~98.25%,氮气含量0.65%~4.87%,重烃含量0%~0.39%。等温吸附实验表明,8号煤的原煤饱和吸附量范围14.89~17.01cm3/g,干燥无灰基饱和吸附量范围18.18~20.12cm3/g,兰氏压力平均为2.35MPa。从图3中可以看出,8号煤等温吸附性与7号煤相比,其原煤曲线和干燥无灰基曲线相近,曲率变化明显增大。

10号煤的4个煤芯解吸测试结果表明,其空气干燥基含气量为7.28~8.69m3/t;干燥无灰基含气量为8.82~10.42m3/t,吸附时间变化在1.37~2.50天,平均1.95天。气体成分以甲烷为主,占94.10%~95.79%,比前述两组煤层的甲烷含量略低,氮气含量变化在3.92%~5.41%,重烃含量0.06%~0.11%。等温吸附实验表明,10号煤的原煤饱和吸附量范围为11.44~15.09cm3/g,干燥无灰基饱和吸附量范围为15.91~16.29cm3/g,兰氏压力为2.04MPa。从等温吸附曲线上可以看出(图3),相较前述两组煤层其原煤曲线和干燥无灰基曲线形态最为接近,曲率相对较大。

3 生产条件

煤层气生产条件分析可分为宏观评价和微观评价两种(黄晓明等,2010),这是受煤层气地质属性和其生产工艺双重决定的,也跟从业人员的工作经历密切相关。一般来讲,石油天然气从业人员习惯于从宏观地质条件去分析煤层气的赋存及保存条件,而煤炭地质人员则倾向于从煤岩及煤显微组成等微观特征来分析煤层气的生产条件。

芦岭矿区下二叠统地层主要包含3层可采煤层,分别为下石盒子组的7号煤和8号煤,以及山西组的10号煤。煤层单层厚度较大。煤变质程度相对不高,但随埋深略微增高,煤类以气煤为主。受构造作用影响明显,煤层内部裂隙十分发育。煤显微组成以较高的镜质组含量和较低的惰质组含量为显著特征。煤层气含气量中等偏高,甲烷含量高,重烃含量低。主要目的煤层的原煤饱和吸附量普遍偏低,但含气饱和度不低。下部煤层的煤层气解吸速率要高于上部煤层。

从前述CLG09V-01井的地层发育特征描述中我们可以看出;7号煤层的顶底板为泥岩,渗透性极差,按传统的煤层气地质观念来讲,其对煤层气具有较好的保存条件。然而,从煤层气生成的角度来看,较强的封闭性不利于煤层气的排出,反而会抑制煤层气的大量生成。所幸的是,7号煤层不厚且其内部裂隙十分发育,煤层气的生成才得以持续发生,因此煤层气含气饱和度并不低。7号煤相对较低的含气量与其吸附特性和煤的热变质程度相对较低有关。8号煤层的顶底板为砂质泥岩,渗透性相对较好。然而厚度近10m的煤层却成为其内部煤层气有效排出的障碍,降低了部分煤芯样品的含气饱和度。10号煤层的顶底板为细砂岩,渗透性好,且煤层厚度适中,煤层受热变质程度最高,因此,煤层作为烃源岩其煤层气得以充分生成并持续排出,同时煤层作为储层其煤层气含气饱和度达到并超过100%。

通过以上分析结合煤层的等温吸附特性,我们可以看出:CLG09V-01井山西组的10号煤层具有煤层结构稳定,内生裂隙十分发育,煤层气含气饱和度高,等温吸附曲线曲率大,兰氏压力低的特点,在三个主要目的煤层中,其生产条件最好,初期产量应该最高。8号煤和7号煤也具有裂隙发育,含气饱和度高的特点,生产条件也是比较好的,特别是8号煤层巨厚,是煤层气能够持续高产稳产的保证。7号煤的等温吸附曲线最为平缓,表明解吸条件相对较差,测试数据也表明其解吸天数是最多的,此外,其兰氏压力也较大,而兰氏体积相对不高。

另外,有煤田地质工作者在进行煤层气资源可采性评价工作中,将较高的惰质组显微组分含量作为煤层气可采性最为有利的指标(吴昱,2010)。CLG09V-01井的煤芯样品分析结果表明,本井煤样中惰质组含量相对沁水盆地等要低,但其对生产条件的影响到底有多大,还需更多的实际资料加以验证,至少在本井区看不出有多大影响。本井区三套主要目的煤层煤样品分析结果表明,三层煤的惰质组组分含量几无差别,均普遍偏低,但煤层气解吸时间却相差较大,7号煤解吸时间要比8号煤和10号煤高一倍多,10号煤解吸时间最短。可见,惰质组组分含量不是影响芦岭矿区煤层气可采性的主要因素。

结语

安徽宿州地区位于我国著名的淮北煤田南部,是我国煤层气地质条件和地面条件最好的地区之一,也是我国第一个对外合作勘探开采煤层气的地区。先后有雪佛龙公司、淮北煤矿、米歇尔-米勒公司(William W.Vail et al.,2006)和中联公司等多家煤炭企业、石油公司和煤层气专业公司做过煤层气地质评价,结果均表明该地区煤层气潜力巨大,勘探开发风险较小。

芦岭矿区所在的宿州煤层气区块已有十余年的勘探历程,商业开采也有两年以上,目前的煤层气生产井以直井为主,采取的是套管完井技术,水力压裂或部分注入氮气等增产措施。生产井持续高产稳产,实现了商业化利用,提高了煤矿安全生产保障。

下二叠统山西组的10号煤和下石盒子组的8号和7号煤是本区煤层气的主要气源岩和储集层。原煤镜质组含量高,中等变质程度,煤吸附能力和煤层厚度适中,顶底板条件好,有利于煤层气的生成和富集。煤储层温度高、渗透率相对较大,内生裂隙十分发育,煤层气含气饱和度高,临/储压力比大,有利于煤层气的产出。

10号煤层的储层压力大,含气饱和度高,煤解吸速率高,对煤层气初期产量贡献大。8号煤层厚度巨大,煤层气资源丰富,是煤层气高产稳产的基础,但煤层受构造影响而破碎,在一定程度上影响了其初期产量。7号煤含气量低,但饱和度较高,顶底板封闭性强,使其保持了较高的原始地层能量。三层煤合采可实现优势互补,合理的控制生产节奏,就可借助7号煤和10号煤先期释放的游离气对8号煤层的渗流条件进行有效的改造,从而加快厚煤层中煤层气的持续析出,我们称之为煤储层自改造机理(黄晓明等,2010)。

参考文献

黄晓明等,2010.煤层气地质勘探实例分析[M].苏州:石油工业出版社

吴昱,2010.西山矿区煤层气资源可采性评价[J].中国煤层气,(4)

中国主要煤矿资源图集第三卷.北京:中国煤田地质总局,1996

中国煤田地质总局,2001.中国聚煤作用系统分析[M].徐州:中国矿业大学出版社

William W. Vail and J.Matthew Conrad . 2006Resource Assessment of the Huaibei CBM Concession, Anhui, Chi-na Marshall Miller Associates

发布于 2022-12-04 14:12:14
收藏
分享
海报
225
上一篇:墨西哥2比0沙特阿拉伯(沙特阿拉伯vs科特迪瓦比分) 下一篇:二十条疫情优化(疫情十个常态化三十条举措)
目录